Definitions | s = t, t T, x:AB(x), x:A. B(x), ES, Type, AbsInterface(A), a:A fp B(a), Top, strong-subtype(A;B), P Q, E(X), , Void, x:A.B(x), S T, suptype(S; T), f'Ia, x:A B(x), E, X(e), f(a), <a, b>, Inj(A;B;f), b, {x:A| B(x)} , f is Q-R-pre-preserving on P, {I}, Q = f== P, P & Q, g glues Ia:Qa f Ib:Rb, Q ==f== P, e c e', x:A. B(x), e X, t.1, let x,y = A in B(x;y), Dec(P), P Q, left + right, False, A, case b of inl(x) => s(x) | inr(y) => t(y), if b then t else f fi , True, T, b | a, a ~ b, a b, a <p b, a < b, A c B, x f y, xL. P(x), (xL.P(x)), r s, r < s, q-rel(r;x), Outcome, (x l), l_disjoint(T;l1;l2), (e <loc e'), e loc e' , (e < e'), e<e'.P(e), ee'.P(e), e<e'. P(e), ee'.P(e), e[e1,e2).P(e), e[e1,e2).P(e), e[e1,e2].P(e), e[e1,e2].P(e), e(e1,e2].P(e), SqStable(P), P Q, a =!x:T. Q(x), InvFuns(A;B;f;g), IsEqFun(T;eq), Refl(T;x,y.E(x;y)), Sym(T;x,y.E(x;y)), Trans(T;x,y.E(x;y)), AntiSym(T;x,y.R(x;y)), Connex(T;x,y.R(x;y)), CoPrime(a,b), Ident(T;op;id), Assoc(T;op), Comm(T;op), Inverse(T;op;id;inv), BiLinear(T;pl;tm), IsBilinear(A;B;C;+a;+b;+c;f), IsAction(A;x;e;S;f), Dist1op2opLR(A;1op;2op), fun_thru_1op(A;B;opa;opb;f), FunThru2op(A;B;opa;opb;f), Cancel(T;S;op), monot(T;x,y.R(x;y);f), IsMonoid(T;op;id), IsGroup(T;op;id;inv), IsMonHom{M1,M2}(f), a b, IsIntegDom(r), IsPrimeIdeal(R;P), f g, P Q, type List, f(x)?z, s ~ t, constant_function(f;A;B), , e < e', val-axiom(E;V;M;info;pred?;init;Trans;Choose;Send;val;time), , , Msg(M), kindcase(k; a.f(a); l,t.g(l;t) ), Knd, EState(T), EOrderAxioms(E; pred?; info), Id, IdLnk, Unit, EqDecider(T) |